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LOWER BOUNDS FOR NONOVERLAPPING 
DOMAIN DECOMPOSITION PRECONDITIONERS 

IN TWO DIMENSIONS 

SUSANNE C. BRENNER AND LI-YENG SUNG 

ABSTRACT. Lower bounds for the condition numbers of the preconditioned 
systems are obtained for the Bramble-Pasciak-Schatz substructuring precon- 
ditioner and the Neumann-Neumann preconditioner in two dimensions. They 
show that the known upper bounds are sharp. 

1. INTRODUCTION 

Domain decomposition methods (cf. [5], [16], [22]) provide parallel algorithms 
for the numerical solution of partial differential equations. One of the indicators 
of the efficiency of a domain decomposition preconditioner is the rate of growth 
of the condition number of the preconditioned system, which usually comes in the 
form of an upper bound. In this paper we will establish lower bounds for two well- 
known nonoverlapping domain decomposition preconditioners in two dimensions: 
the substructuring preconditioner of Bramble, Pasciak and Schatz (cf. [3]) and 
the Neumann-Neumann preconditioner (cf. [9], [10], [16], [11] and the references 
therein). Our results show that the known upper bounds for these algorithms are 
sharp. 

We will establish the lower bounds within the framework of additive Schwarz 
preconditioners, which can be summarized as follows, where all vector spaces are 
real and have finite dimensions. 

Let V be a vector space, V' be the dual space of V, and (,.) be the canonical 
bilinear form on V' x V, i.e., (a,v) = a (v) V a E V',v E V. We say that a 
linear operator A: V > V' is symmetric positive definite (SPD) if (Avl,v2) = 

(Av2,vl) Vv1,v2 E V and (Av,v) > V0 V v E V. 
Let Vj, 0 < j < J, be vector spaces and Bj: Vj V V' be linear SPD operators. 

The additive Schwarz preconditioner B: V' V for the linear SPD operator 
A: V > V' is defined in terms of the Bj's by the formula 

J 

(1.1) B = IjBj Ij 
j=O 
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where Ij Vj > V is a linear operator that connects Vj to V, and the operator 
Ijt: V' V' is defined by (1 a, v) = (a,Ij v)VaE V',v E Vj. 

The operator BA: V - V is clearly symmetric positive semidefinite with 
respect to the inner product (A., .). Under the condition 

(1.2) V=ZIjVj, 
j=0 

the operator B is invertible and BA is symmetric positive definite. The eigenvalues 
of BA are therefore positive, and we have the following characterizations (cf. [19], 
[17], [20], [21], [8], [2], [24], [25], [12]) for the minimum and maximum eigenvalues 
of BA: 

(1.3) Amin(BA) = min (Av, v) 
0#vcvmi , v Ej Z=0(Bjvj, vj) 

Vj E Vj 

(1.4) Amax(BA) = max (Av, v) 0$AvCV mmnv=Z, 0jv 'ij= ZO(Bjvj, vj) 
vj E V 

In order to obtain a lower bound for the condition number r,(BA) - Amax (BA) we ,\j,(BA) 
need to find a lower bound L for AmaX(BA) and an upper bound U for Amin(BA). In 
view of (1.3) and (1.4), the strategy for establishing the lower bound L of AmaX(BA) 
is to find one 0 7 v. E V and one decomposition v* = Z0 Ijvj for which we have 

(Av, v,,) > EJZ=0(Bjvj, vi), and the strategy for establishing the upper bound 

U of Amin(BA) is to find one 0 7 Vt E V such that (Avt,vt) < UEJ=0(Bjvj,vj) 
holds for any decomposition vt = Z-O I jvj. 

Based on these strategies we will show that, for a second order model finite ele- 
ment problem, the condition number of the preconditioned system is bounded below 
by c[1 + ln(H/h)]2 for both the BPS preconditioner and the Neumann-Neumann 
preconditioner, where H represents the diameter of a typical subdomain, h is the 
mesh size of the triangulation and the constant c is independent of H, h and the 
number of subdomains. 

The rest of the paper is organized as follows. The descriptions of the model 
finite element problem and the preconditioners are given in- Section 2. The con- 
structions of the functions v* and Vt in the strategies stated above are based on 
the constructions of special one dimensional piecewise linear functions, which are 
carried out in Section 3. The lower bounds for the BPS preconditioner and the 
Neumann-Neumann preconditioner are then established in Sections 4 and 5, re- 
spectively. Section 6 contains the proofs of two technical lemmas from Section 3. 

For the convenience of the readers, we state here the definitions of the Sobolev 
norms and seminorms that are used throughout this paper. 
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Let Q be a bounded open subset of IR'7 and IQI be the n-dimensional Lebesgue 
measure of Q. We define 

(1.5) IIVIL2(Q) = 1 /v12 dx, 

(1.6) IV1(Q) = Q11(2/) jIVVI2 dx, 

(1.7) ||V|1 ( = 11V112 + IV1I2H (Q) 

For a bounded open interval I C R, we define 

(1.8) IVI 1/2(I) = 1 IV(X) - v(y)12 dxd H1/2 (I) x-yI2 dxy 

(1.9) IIVIIH1/2(I) = IIVIIL2(I) + IV H1/2(I) 

and for a bounded open set Q C JR2 with a C0,1 boundary, we define 

(1.10) IIV = 12I Iv12 ds, 

(1.11) V12 ) j V(X) - V(y)1 ds(x)ds(y), 

(1.12) IVIH1/229Q) = + IVIH1/2(9Q) 

where I7QI is the arc-length of DQ, and ds is the differential of the arc-length. 
Note that the norms and seminorms defined by (1.5)-(1.12) are invariant under 

translation and scaling. Also, the inner products (', - )L2Q, () H and (., a) H 1/2 are 
defined by the polarization identities of the corresponding norms 11 IIL2, 11 || H1 and 
|| IIH1/2 . 

2. THE MODEL PROBLEM AND THE PRECONDITIONERS 

Since our goal is to show that the known condition number estimates for the BPS 
preconditioner and the Neumann-Neumann preconditioner are sharp, it suffices to 
consider the simplest model problem. 

Let Q = (-1, 1) x (-1, 1). The variational formulation for the Poisson equation 
on Q with homogeneous Dirichlet boundary condition follows. 

Find u E Ho (Q) such that 

(2.1) a(u, v) = fvdx Vv EvHo(Q) 

where f E L2(Q), and the variational form a(., ) is defined by 

(2.2) a(vi,v)jViVvd V1v2H(Q). (2.2) a(VlxV2) =,/VV1 * VV2 dx VV1,V2 E Ho(Q 

Anticipating the use of nonoverlapping preconditioners, we construct a triangu- 
lation of Q in the following way. Let Q be divided into J = 22k nonoverlapping 
squares Q. , Qj (cf. Figure 1 where k = 2). By adding a diagonal to each 
Qj we obtain a triangulation TH of Q (cf. Figure 2). Then we perform a regular 
subdivision of TH to obtain the triangulation Th (cf. Figure 3). Here H and h are 
the lengths of the horizontal edges in TH and Th, respectively. 
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Let Vh C Ho (Q) be the P1 finite element space associated with Th. The dis- 
cretization of (2.1) is to find Uh E Vh such that 

(2.3) a(Uh,V) = fvdx VV E Vh. 

In a nonoverlapping domain decomposition method we split the unknown uh in 
(2.3) into two components with respect to the skeleton F = UJ 1 (OfQj \ OfQ) as 
follows. Let Vh(Q \ F) = v E Vh: v vanishes on F} and Vh(F) C Vh be the a(.,) 
orthogonal complement of Vh(Q \ F), i.e., 

(2.4) Vh(IF)={vEVh: a(v,w)=O VwEVh(Q\Fr)}. 

The functions in Vh (F) are known as discrete harmonic functions and they are 
completely determined by their nodal values along F. We can write Uh = Uh + Uh, 

where ith E Vh(Q \ F) and Uih E Vh(F). The two components ith and Uih are 
determined by 

(2.5) a(ith, v) =j fvdx VV E Vh(Q \ I) 

(2.6) a(ih,v) =jfvdx VV E Vh(F) . 

Since th can be obtained from (2.5) by solving in parallel a Dirichlet problem 
in each subdomain, the goal of a nonoverlapping domain decomposition method 
is to provide a good preconditioner for the system (2.6) so that it can be solved 
efficiently by, for example, the preconditioned conjugate gradient method. 

Let Sh: Vh (F) > Vh(F)' be defined by 

(2.7) (Shvl,V2) =a(v1,V2) V V,v2 E Vh(F) - 

We can write (2.6) as Shiuh = fh, where fh E [Vh(F)]' is defined by (fh, v) = 

fo fv dx. The operator Sh, known as the Schur complement operator, is then the 
one that we want to precondition. 

Below we will describe the BPS preconditioner and the Neumann-Neumann pre- 
conditioner for Sh. In both methods we use the coarse grid space VH C Ho (Q), 
which is the P1 finite element space associated with the triangulation TH. The 
space VH is connected to Vh(1) by the operator IH: VH - Vh(F) defined by 

(2.8) (IHV) | = vI r v E VH, 

and the linear SPD operator AH: VH - VH is defined by 

(2.9) (AHV1, V2) = a(vl, v2) Vv1, V2 E VH. 
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BPS preconditioner. Let Ee, 1 < e < L, be the common edge of neighboring 
subdomains without the endpoints, and let the edge space Vh(Ee) be defined by 

(2.10) Vh(Ee) = {v E Vh(F): v=OonF\Ee}. 

Each Vh(Ee) is connected to Vh(F) by the natural injection Ie: Vh(Ee) Vh-(), 
and there is a linear SPD operator Se: Vh(Ee) - Vh(Ee)' defined by 

(2.11) (SevlV,v2) = a(v,,v2) Vv1,v2 E Vh(Ee) . 

The BPS preconditioner BBPS: Vh(F)h - Vh(F) is given by 
L 

(2.12) BBPS =IHAHIHt+ S IeS 1 Ie. 
e= 1 

It is clear that (1.2) is satisfied. In fact, we have the stronger condition 

(2.13) Vh () = IH VH D Vh(E1) D * *D Vh(EL)E 

The following condition number estimate (cf. [3]) holds: 

(2.14) I'(BBpsSh) < C (1 + Inh) 

where the positive constant C is independent of H, h and J. 

Remark 2.1. In the original BPS algorithm (cf. [3]) the exact solves Si1 are re- 
placed by spectrally equivalent interface preconditioners that are easier to compute. 
But for our purpose we may as well use exact solves. 

Remark 2.2. There is numerical evidence (cf. [3]) that the estimate (2.14) is sharp. 
A mathematical proof will be given in Section 4. 

Neumann-Neumann preconditioner. Let Vj, 1 <j < J, be the restriction of 
Vh to Qj, i.e., Vj is the P1 finite element space on Qj associated with the trian- 
gulation Th whose members vanish on lQ n 00j. The skeleton &Qj \ &Q of Q is 
denoted by rj. 

The SPD bilinear form aj(,j ) is defined by 

(2.15) hi(vI,v2)=j VvI Vv2dx+H-2j vIv2dx Vv1,v2 eH1(Qj). 

Let Vh(Qj) = {v e Vj : v vanishes on &Qj } and Vh(Fj) C Vj be the aj orthog- 
onal complement of Vh(Qj), i.e., 

(2.16) Vh(Fj) = {V e Vj 3j(v,w) = 0 Vw E Vh(Qj)}. 

The functions in Vh (Fj) are discrete harmonic with respect to the bilinear form 
&j (., .), and are determined by their nodal values on Fj. 

Each Vh (Ij3) is connected to Vh (F) by Ij : Vh (rj) ) Vh (r) defined by 

(2.17) - Jv)(o) if the node p is not on F3, 
217JV)& - lv(p)/n(p) if the node p is on F3, 

where n(p) is the number of subdomains sharing the node p. There is also an SPD 
linear operator Sj : Vh(Fj) Vh(3j)' defined by 

(2.18) (S3v1,v2) =h (V1,V2) Vv1,v2 e Vh(Fj). 
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The Neumann-Neumann preconditioner BNN: Vh(F) Vh(F)' is given by 
J 

(2.19) BNN = IHAH 'IH + Is7lI 
j=1 

It is easy to check that (1.2) holds. 
The following condition number estimate (cf. [9], [10], [11]) holds: 

(2.20) 1,(BNNSh) < C (1+ln h ) 

where the positive constant C is independent of H, h and J. 

Remark 2.3. For a subdomain Qj that has at least one side on &Q, we can define 
aj (.,) by 

&3(vI,v2)=j VvI.Vv2dx VvI,v2 EH'(Qj), 

and then define the space Vh(Fj) accordingly. The results in Section 5 for the 
Neumann-Neumann preconditioner also hold for this choice of &j (., .). 

Remark 2.4. Numerical results for the Neumann-Neumann preconditioner without 
a coarse grid space can be found in [15]. 

For future reference, we collect some well-known facts concerning discrete har- 
monic functions and the space H1/2 in the following lemma . The proofs of these 
facts can be found either in [3], [7], or by straightforward calculations using (1.10)- 
(1.12). 

Lemma 2.5. Let D be a square with a uniform triangulation Th, and Vh C H1 (D) 
be the P1 finite element space associated with Th. Suppose that v e Vh is discrete 
harmonic with respect to the bilinear form d(., ) defined by 

d(vi, V2) = I Vv1 Vv2 dx, 

i.e., d(v,w) = 0 for all w e Vh which vanishes on OD. Then we have IVIH1(D) 
IVIH1/2(aD). On the other hand, if v e Vh is discrete harmonic with respect to the 
bilinear form d(.,7) defined by 

d(vI,v2)= I V . Vv2 dx+ ? ID V2 dx, 

i.e., d(v,w) = 0 for all w e Vh which vanishes on OD, then we have jjVjjH1(D) 
IIVIIH1/2(aD). Moreover, for any function v e H1(D) which vanishes on one side of 
AD, we have IIVIIH1/2(aD) IVIH112(aD) 

3. SPECIAL ONE DIMENSIONAL PIECEWISE LINEAR FUNCTIONS 

Let (a, b) be a finite open interval. The space HO2 (a, b) plays an important role 
in the theory of nonoverlapping domain decomposition methods in two dimensions, 
and it is defined by 

(3.1) HO/2(a, b) = {v e L2(a, b): v e H12 (R)}, 
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where v is the trivial extension of v to IR, i.e., (x) = { x (a b) We define the 

norm of v e HO/2(a,b) to be IVIH1/2(R)7 i.e., 

VIV122( b) = 12 dxdy 

(3.2) = 1b b Iv(X) - V(y)12 dbdy? Iv(x) V(1+1') dx 

IV12 2 1V (X) 12 1- __ dx 
HIVIH1/2(a,b) x2 a ? 1 ) dx. 

Note that the norm defined by (3.2) is invariant with respect to translation and 
scaling. 

It is well known (cf. [18], [23]) that 

(3.3) H,/2(a, b) = [L2(a, b), Ho (a, b)]1/2 

with an equivalent norm, where [L2 (a, b), Ho(a, b)]1/2 is the interpolation space 
halfway between L2(a, b) and Hoj(a, b) obtained by the complex method (cf. [1], 
[23], [14]). 

Let q be a continuous function defined on (a, b) which is piecewise linear with 
respect to the uniform subdivision of mesh size p, and q(a) = q(b) = 0. The 
following estimate (cf. [3], [7]) is crucial to the condition number estimates for 
nonoverlapping domain decomposition methods in two dimensions: 

(3.4) 1101ILoo(a,b) < C(1 + I lnPI) 1/2 
1I'Hl62(a b) 

Therefore the first step towards proving the sharpness of (2.14) and (2.20) is to 
produce a piecewise linear function for which the estimate (3.4) is sharp. This 
will be achieved through the interpolation of finite sine series by piecewise linear 
functions. 

In order to avoid the proliferation of constants, we will henceforth use the nota- 
tion A < B (or B > A) to represent the statement that A < constant x B, where 
the constant is a universal constant (i.e., independent of any parameters). The 
notation A B means that A < B and A > B. 

Let v = v?n?=0 vn sin ((rur/e)x) be an arbitrary function in L2(0, 1). By Parseval's 
identity, we have 

00 

(3 5) ~~~~~~IIVIIL2(0,t) 
' 

E vn 
n=1 

where the scaling invariant norm I I L2 (oe) is defined in (1.5). Similarly, v belongs 
to Ho'(07,) if and only if Zn=l nr2IVn12 < 00, and we have 

00 

(3.6) IIV I12H (Oe 2 1v 2, 
n=1 

where the scaling invariant norm 11 IIH1(0o,) is defined in (1.7). 
Let the space iT8 be defined by 

00 00 

(3.7) Ys, ={v E L2(0, e): v= E Vnsin ((rr/e)x) and E n2, IVn 12<C}, 
n=1 n=1 
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with the norm 1 Ills defined by 
00 

(3.8) V 
III = Zn2sIVn12. 

n=1 

Then the spaces Y8 form a Hilbert scale (cf. [14]) and we have 

(3.9) F1/2 = [To, F] 1/2 

Since Fb = L2(0,?) and Fi = Ho1(0, ), the following lemma is an immediate 
consequence of (3.3), (3.5)-(3.9) and interpolation. 

Lemma 3.1. A function v = >Z=1vn sin((rur/e)x) e L2(0, ?) belongs to Hoo2(0, ?) 
if and only if E'=I nIVn 12 < oo, and we have IV12(o e) l nIVn 

12 

Let N = 2k (k = 0, 1, 2, 3...) and the function GN on (0, 1) be defined by 

N 

(3.10) GN(X) = E (4n 3) sin ((4n - 3)7rx) . 

The properties of GN are summarized in the following lemma. 

Lemma 3.2. The function GN is symmetric with respect to the midpoint of (0, 1), 
where it attains its maximum in absolute value. Moreover, we have 

(3.11) HIGN 1H1(O2 ) NX 

(3.12) IGN /2(0o1) 1 ?nN 

(3.13) IGNIILO(o,1) = GN(1/2) 1 + ln N. 

Proof. The symmetry of GN is straightforward, and (3.13) follows from Lemma 6.1 
in Section 6. The estimate (3.11) follows from (3.6), and (3.12) follows from 
Lemma 3.1 and Lemma 6.1. 0 

Let Lp(O, 1) be the space of continuous functions which are piecewise linear with 
respect to the uniform subdivision of (0,1) of mesh size p, and hlp: H1 (0, 1) 
Lp(O, 1) be the nodal interpolation operator. 

Lemma 3.3. Let p = 1/N and 3p = HpGN. Then 3P is symmetric with respect to 
the midpoint of (0,1) and we have 

(3.14) IIgpHLO,(Oj1) = gh(1/2) . 1 ? lnpl, 

(3.15) I3PIH12(O,1) 1+ I PInp 

Proof. The symmetry of 3P and (3.14) follows immediately from the symmetry of 
GN and (3.13). 

We have the following interpolation error estimate (cf. [6], [4]) for the interpo- 
lation operator IHp: 

(3.16) II - hp(IIL2(O,1) + PI - H pCIH1(0,1) < PMC|H1(0,1) V( e H1(0, 1). 

In view of (3.3), we can interpolate (3.16) to obtain 
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By (3.17) and (3.11) we have 

(3.18) IGN-9PIHj/2(o,1) < 1 

The estimate (3.15) then follows from (3.12) and (3.18). O 

Combining (3.14) and (3.15), we have 

(3.19) pIlpL.(Oj) (1 + I lnpI) 1/2 PIH1/2(0 1) 

In other words, we have constructed a continuous piecewise linear function for which 
(3.4) is sharp. 

Remark 3.4. A related estimate is (cf. [3], [7]) 

(3.20) II<IILOO(a,b) < (1 + I 1/2 

which holds for any continuous function X on (a, b) that is piecewise linear with 
respect to the uniform subdivision of mesh size p. The estimate (3.19) shows that 
(3.20) is also sharp, since 

IlpIL.,(O01) ( ? InPI)1/2 IIPIIH/2(0 1) 
> (1 I lnnPI) 1/2 PIIH1/2(o 1) 

The sharpness of (3.20) was also investigated numerically in [13]. 

Remark 3.5. Let v be a discrete harmonic function defined on the unit square D 
with vertices (0, 0), (1, 0), (1, 1) and (0,1) with respect to the uniform triangulation 
of mesh size p such that v(x, 0) = gp(x) for 0 < x < 1 and v vanishes on the other 
three sides. Then it follows from Lemma 2.5 and Lemma 3.3 that 

IIVIIL.(D) > (1 ? ln P)1/2 JIvIHH1(D) 

which implies that the discrete Sobolev inequality (cf. [3]) is sharp. 

The following corollary is obtained from Lemma 3.3 by scaling. 

Corollary 3.6. Let gh be the function on [-H, H] defined by 

(3.21) gh(x) =P (2H ) for P H 

Then gh has the following properties: 
(i) gh is piecewise linear with respect to the uniform subdivision of [-H, H] of 

mesh size h, and gh(-H) = gh(H) = 0; 
(ii) gh is symmetric with respect to the midpoint 0; 

(iii) IIghIILo,(-H,H) and I|hIH1/2(-H H) are estimated by 

(3.22) gh(O) = IIghIIL,(-H,H) 1 + lnh h 

(3.23) Igh121/2 H) 1 + ln h 

The piecewise linear function gh will play a key role in the constructions in 
Sections 4 and 5, and we will also need the estimates for some related piecewise 
linear functions. First we state two technical lemmas (Lemma 3.7 and Lemma 3.8) 
on the unit interval whose proofs are deferred to Section 6. 

Recall that hi : H1 (0 ,1) -L 1 (0, 1) is the nodal interpolation operator with 
respect to the subdivision {0, 1/2, 1}. 
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Lemma 3.7. The following estimate holds: 

(3.24) 19P 9IIh i /2(o11/2) 
= Il9-Pi2 1/2 (1 + InPI)3. 

Let PP, a continuous function on [0, 2 + p] which is piecewise linear with respect 
to the uniform subdivision of mesh size p, be defined by 

(3.25) PP I [o,-p] 9PI[O,-p] X () = and PP( +p) = 0 

and similarly qp, a continuous piecewise linear function on [2-p, 1], be defined by 

(3.26) 4P 1+P,l] 9P +p,I] ' !) = 2 9P(2) and p -P) =0. 

Lemma 3.8. The following estimate holds: 

(3.27) IPPIH2(2+P) I I 1 ) 1 (1 ln p)3. 

Let HH be the nodal piecewise linear interpolation operator with respect to 
the subdivision { -H, 0, H} of [-H, H]. The following corollary is obtained from 

Lemma 3.7 by scaling. 

Corollary 3.9. Let gh be the function defined by (3.21). Then we have 

| lHgh1/2HOO (-H,O) =lg H ( H) 
' ? ln hJ 

Let Ph, a continuous function on (-H, h) which is piecewise linear with respect 
to the uniform subdivision of mesh size h, be defined by 

(3.28) PhKt-H,-h] 
= 

ht-H,-h] Ph(0) = -gh(0) and Ph(h) = 0, 2 
and similarly qh, a continuous piecewise linear function on [-h, H], be defined by 

(3.29) qhl[h,H] 
= 

ghl[h,H]' qh(O) = -gh(O) and qh(-h) = 0. 
2 

The functions Ph and qh are scaled analogs of p and q, and the following corollary 
is a scaled version of Lemma 3.8. 

Corollary 3.10. The following estimate holds for the functions Ph and qh defined 
by (3.28) and (3.29): 

P IHO2 (- H,h) lqh H1/2( hH) (1+ ln - 

4. LOWER BOUND FOR THE BPS PRECONDITIONER 

According to (1.3), (1.4), (2.7), (2.9), (2.11) and (2.13), we have the following 
characterizations of AmaX (BBPSSh) and Amin(BBpSSh): 

(4.1) Amin(BBPSSh) = min a(v, v) 
OOvEVh(r') a(vH, VH) + = v 

(4.2) Amax(BBPsSh) = MaX a (v, v) 
OOvEVh(I') a (VH ,v ? Zr- a (ve, ve) 

where VH e VH and ve E Vh(Ee) (1 < < < L) form the unique decomposition 

V = IHVH ? Ze-= ye. 
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(-H,H) D (HH) 

0 
A B 

Q2 Q3 

(-H,-H) C (H,-H) 

FIGURE 4 

Lemma 4.1. We have Amax(BBpsSh) > 1. 

Proof. Let 0 =, v* belong to one of the edge spaces, say, v* e Vh (El). The decom- 
position of v. is given by VH = 0, Vl = v* and 0 = V2 = =VL =0. Hence we 
have 

a (v., v.) a (v., v.)_1 

a(VH,vH) + e-L a(ve,ve) a(v.,v.) 

and the lemma follows from (4.2). 0 

Lemma 4.2. We have Amin(BBpSSh) < [1 + ln(H/h)] 

Proof. We need to construct 0 7& vt E Vh(F) such that 

(4.3) a(vt, vt) < + In h] [a(vH, vH) + a(ve, ve)] 

holds for the unique decomposition v = IHVH + = ye, where VH e VH and 
ve E Vh(Ee) for 1 <e < L. The lemma then follows from (4.1) and (4.3). 

The definition of vt involves the four subdomains %1, 02, 03 and 04 neighboring 
the center of Q, whose vertices are given by (0, 0), (0, ?H), (?H, 0) and (?H, ?H) 
(cf. Figure 4). 

Let gh be the function defined by (3.21). The function vt e Vh(r) is defined to 
be 0 on r except on the line segments AB and CD, where it is given by 

(4.4) vt(x, 0) = gh(x) for -H<x<H, 

(4-5) vt(O,Y) = gh(Y) for -H<y<H. 

It is clear that Vt vanishes outside Q1 U Q2 U Q3 U Q4. In the unique decomposition 
of vt, the coarse grid function VH is just the nodal interpolant of Vt in the coarse 
grid space VH, and the only nontrivial edge space functions are associated with the 
four edges E1 = OA, E2 = OB, E3 = OC, and E4 = OD. 

By Lemma 2.5, we have 
4 4 

(4.6) a(vt,vt) = Z Hp(1E|2(aQj) 
j=l j=l 

and from (1.11), (3.2), (4.4), (4.5), and the symmetry of gh we find 

(4.7) |Vt2Igh 19 2( HH) for I < j < 4. 
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Combining (3.23), (4.6) and (4.7), we conclude that 

(4.8) a(vt,vt) I 1 H 
h 

Since VH e VH vanishes at all the vertices of TH except the origin, where 
VH (O, O) = gh (0), a simple calculation shows that a (vH, VH) = I V (0) 12 = Igh (O) 12, 
and then it follows from (3.22) that 

(4.9) a(VH, VH) I ( + In-) 

Finally we estimate a(ve, ve) for the edge functions ve (1 < < < 4). Since vt = 

IHVH + _E ye, on the edge Ee the function ve equals the difference between vt 
and its coarse grid interpolant, and ve vanishes on F \ Ee. 

Let Qe1 and Qe2 be the two subdomains neighboring Ee. We have, by Lemma 2.5, 
(1.11) and (3.2), 

a(ve,ve) = velH1(-e ) ? Ve|H1(ze ) velHi/2(Et) 

and then Corollary 3.9 and (4.4)-(4.5) imply that 

(4.10) a(ve,ve) (1+In ) for I << 4. 

The estimate (4.3) (and hence the lemma) follows from (4.8)-(4.10). O 

Combining Lemmas 4.1 and 4.2, we have the following theorem on the lower bound 
of K (BBPSSh). 

Theorem 4.3. For the model problem described in Section 2, we have 

rs(BBPSh) >C (1+lnh) 

where c is independent of h, H and J. 

Remark 4.4. The proof of Lemma 4.2 (and hence Theorem 4.3) requires at least 
one cross point, which is satisfied by the model problem in Section 2. It also agrees 
with the fact that Is(BBpsSh) < 1 when there are no cross points (cf. [3]). 

5. LOWER BOUND FOR THE NEUMANN-NEUMANN PRECONDITIONER 

According to (1.3), (1.4), (2.7), (2.9), and (2.18), we have the following charac- 
terizations of Ama X(BNNSh) and Ami nj(BNNSh): 

(5.1) Amin(BNNSh) = mi a(v, v) 7 

min a(vH, VH) + Z &j (vj V ) 
v=IHvH+EjZ=l Ijfj j=[ 

vHEVH vjEVh Wj) L J 

(5.2) Amax(BNNSh)=0 vMaV(X) a(v,v) 

min va(VH) VH) + E dj (VE VE) 
v=IHvH+j=1 IjVj [-+ 
vH E VH,vj EVh (rj) L=J 

This time we will first establish an upper bound for Amin(BNNSh). We begin 
with the construction of a piecewise linear function on (0, H). 
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B 

--D 

A 

FIGURE 5 

Lemma 5.1. There exists a continuous function 0 on (0, H), not identically zero, 
which is piecewise linear with respect to the uniform subdivision $ of mesh size H/8, 
and has the following properties: 

(i) V)(x) = 0 for x f ( H4 ), 3 
(ii) (k, W)Hl/2(H/8,7H/8) = 0 for any linear polynomial w on (H/8, 7H/8). 

Proof. Let V be the space of continuous piecewise linear functions associated with 
$ that satisfy (i). Then dim V equals three, while there are only two linearly 
independent conditions in (ii). O 

Lemma 5.2. We have Amin(BNNSh) < 1. 

Proof. For H/h < 4, this is a consequence of the estimate (cf. [9], [10], [11]) 

Amax(BNNSh) < (1 + ln H)2 

For H/h > 8, we construct a function Vt E Vh(F) as follows. Let AB be the line 
segment connecting (0, 0) to (0, H), and denote by Q, and Q2 the two neighboring 
subdomains (cf. Figure 5). We define Vt to be 0 on r except on the line segment 
AB, and on AB we have 

(5.3) vt(O, y) =+(y) for O < y < H, 

where 0 is the function from Lemma 5.1. Clearly Vt vanishes outside Q1 U Q2, and 
we have, by Lemma 2.5 and Lemma 5.1 (i), 

(5.4) a(vt,vt) = HVtHl(Q2) + VtH(Q2)D) 

where C = (0, H/8) and D = (0, 7H/8) (cf. Figure 5). 
Consider now an arbitrary decomposition Vt IHVH + EJ=1 1jvj, where VH E 

VH and vj E Vh(Fj). On the line segment CD, by (2.8) and (2.17), IHVH = VH is 
a linear polynomial, and 

(5.5) (Vt -VH)IcD (V 2) 0D 

It follows from Lemma 5.1 (ii), (5.3) and (5.5) that 

(5.6) llVt HH1/2(CD) ? lVjt-VH 11H1/2(CD) < |V1 IH1/2(CD) + |2|H1/2(CD) 

Since ez(j,) = H1(Q-) (cf (17) and (2.15)), it follows from (5.6) and the trace 
theorem (cf. [23]) that 

(5.7) IIVt H1/2(CD) al&(v1,v1) + &2(V2, V2) . 

Combining (5.4) and (5.7), we find a(vt, vt) < a(vH,vH) + Za =j(vj,vj). Since 
this last estimate holds for any decomposition of vt, the lemma follows from (5.1). 

Now we prove a lower bound for Amax(BNNSh)- 
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Lemma 5.3. We have Amax(BNNSh) > [1 + ln(H/h)]2 

Proof. We need to construct 0 $4 v* E Vh(F) such that, for one decomposition 
V* = IHVH + EJ Ijvj, where VH E VH and vj E Vh(rF), we have 

(5.8) a(v* v*) > I( + In h Fa(VH,VH) + EZQl(Vi,Vj) 

The lemma then follows from (5.2) and (5.8). 
The construction of v* again involves the four subdomains neighboring the center 

of Q (cf. Figure 4). We define w E Vh(Fl) to be 0 on r1 except on the two line 
segments OA and OD, where we define 

(5.9) w(x, 0) = gh(X) for -H<x<0, 

W(O,Y) = gh(Y) for 0<y<H. 

The function v* is then defined to be I, w, and we choose the decomposition 

(5.10) O=VH=V2=V3= =VJ and v1=w. 

By Lemma 2.5 and Corollary 3.6, we have 

ell(V, 1) IW2 12 H 
(5.11) H2(vi,vI) W H H1/21Q/2(-H,H) 1+ In -. 

(i) H~00 (-,)h 

From the definition of Ii (cf. (2.17)) and (5.9), it is clear that v* vanishes outside 
Ql U Q2 U Q3 U Q4. It follows that 

4 

(5.12) a(v*, v*) = Iv* 1 
j=1 

Using (2.17), (3.28), Corollary 3.10, (5.9), and Lemma 2.5, we have 

(5.13) Ph~6)IV*|H1(Q2) +H1/2n) Ph12 

It follows from (5.11)-(5.13) that a(v*,v*) > (I +ln H) 2&(vl,vi), which implies 
(5.8) for the decomposition in (5.10) and hence the lemma. 

Combining Lemmas 5.2 and 5.3, we have the following theorem on the lower bound 
of rA(BNNSh) . 

Theorem 5.4. For the model problem described in Section 2, we have 

r,(BNNSh) > C (1 + ln-) 

where c is independent of h, H and J. 
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6. PROOFS OF THE TWO TECHNICAL LEMMAS 

We will present the proofs of Lemma 3.7 and Lemma 3.8 in this section. We 
begin with an elementary lemma from calculus. 

Lemma 6.1. Let 0 be a positive, continuous and decreasing function defined on 
(0, ox). Then we have 

K K 

, f (k) 0- f (1) + f /(x) dx. 
k=l 

Proof. Using Riemann sums and the sign and monotonicity of f(x), we have 

K K K K-1 

,f(k) < fj(1)+ f(x)dx and j f(x)dx< 1 f(k) O 
k=1 k=1 

The coefficients of the sine series n?=la n sin(2n7rx) of the function GN-II1 GN 
on the interval (0,1/2) are given by 

an= [GN- llGN] sin(2n7rx) dx 

_2 fl'2 
=2} [GN-111 GN] cos(2n7rx) dx. 

Note that (l GN) (X) = [2GN(1/2)]x on (0,1/2). Hence we have, by (3.10), 

(6.1) [GN - -llGN]'(X) = 7 cos ((4m- 3)7rx)] 2GN(1/2) 

for 0< x < 
We can therefore write 

(6.2) On = - () 1Nam,n 
m=1 

where 

(6.3) am,n = 2n+4m-3 2n-4m+3 

Lemma 6.2. It holds that E 
I 
!( amn) 1. 

n=3N+l1 m= 1 

Proof. FRom (6.3) we have, for n > 3N, EN am < 
EN=l n < . Then 

Lemma 6.1 implies that 

?? N 0 O 

1: 
1 a m,n) 

N2 
1 

i LI 
nL3N+. m= 1 n=3N+) 

3N /N 2 

Lemma 6.3. It holds that - ,am, < (1I+ In N) 
n=N m =l 
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Proof. For N < n < 3N, we have, by Lemma 6.1, 

N 1 1 + 1 2n+4N- 3 

Z= 2n +4m-3 2n + 14 2n + / 

and 

N ~~~~6N-11 

Z2n4m+3 1' -,1+lnN. 
m=1 2n-4m + 3 =1 i 

It follows from these two estimates, (6.3) and Lemma 6.1 that 

3N /N 2 3N 

Lemma 6.4. ft holds that ,- (, am,n) (1 +lnN) . 

Proof. For 1 <n < N -1, we can write, by (6.3), 

N 

(6.4) Z am,n= cn-bn,X 
m=l 

where 

,n n n 

S 2nN- 4mN+3 

and 

[=m=l12n+z4m-3] [m +i2n24m +3l 

We claim that 

(6.5) Fbor1 forIl < n < N <nN. 

Assume first that n is even. Then we have, for n = 

where~~~~~~ 

= E 2n - 4m + 3 $1. 

OntEe2nt4mr-3hn,w 2n-4nm+1ui3u 

|M= (4mn 1 m3) 

Onth6thrhad5we Inl -- 2e-1, we als fnd by usng. hrvouaeta 
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Next we estimate ICnl. Observe that _-EN 1 N-n 1 
Lm=ni+l 2ni-4m+3 Lm=i n4m3 

and hence 
N 1 N 

(6.6) E 2n+4m_3 < Cn< 2 E 2n+4m-3 
m=l m=1 

Therefore, we obtain by Lemma 6.1 
N 1 1 1 2n?+4N - 3 

(6.7) Cnl Z 43di + n 2?) (6.7) C c d E 1n+4 3 2n + I + 4-l( 2n + I 

From (6.4) we have 

The estimates (6.5), (6.7) and Lemma 6.1 imply that 

N-11 N-N1 - 

(6.9) Z -bL$ b < 1 + lnN, 
1n=l nn=l 

(6.10) !-C2 i [[jj 3+[-in2 ( 2+ 4N 
fl=1 _ E1n=< (2 4n+ 2 -1 

So it only remains to estimate Z4N-L71(1/n) in2 [(2n + 1)/(2n + 4N -3)]. By 
Lemma 6.1 we have 

Z9 1ln2 b 2n <l<4I) 

n=l1n N=1 

N-1 24N-1) l N2n11 

1~ ~ ~ ~ n (2+)2+N3 \2n?1N- 

(6.11) ( n)+J 2+ z 2 4 - 3) + 4N - 3 ) 

=(1+n)+ [1n (22X+1 N-1N- 

n(1 + ln N)3 . 

The lemma follows from (6.8)-(6.11). 

Proof of Lemma 3.7. By the symmetry of n, it suffices to estimate the first term 

Lem-ma9pIH162(0,1/2). According to Lemma 3.1 and (6.2), we have 

GN - 1 N//N - 3 

N 1 
24( -Il/ 1/) 2n 

( 
I m 
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Hence it follows from Lemmas 6.2-6.4 that 

(6.12) IGN-1IIGN 1H2( 1/2) (1 + In N)3 = (1 + ln P)3. 

On the other hand, as in the proof of Lemma 3.3, standard interpolation error 
estimates and (3.11) imply that 

(6.13) IGN- 1/2) S 12 

Since 1I1!GN = I 1gp, the estimate (3.24) follows from (6.12) and (6.13). O 

We now turn to the proof of Lemma 3.8. First we consider, for N > 4, the 
function HN on [0,1/2] defined by 

GNL2X NJ 2 - -2N (6.14) HN (X) = NGN (1 - 1 ) (I -2x) 1_1< x < 1 

Let E'L1,3 , sin(2n7rx) be the sine series of HN on the interval (0, 1/2). Using 
(3.10) and (6.14), we find 

1/2 
3n= 4j HN (X) sin(2n7rx) dx 

2 {1/2 
= 2j1/2 HN (x) cos(2n7rx) dx 

=2 H 2 o (N m-3ix o(nr)d 
j -7r cos ((4m--3)7rx) cos(2n7rx) dx 

~615~ 1 [sin ((2n + 4m 
-NG 

3)(x si (- 2 

N 

4m + 3)i2rx) 1x (.')(~N 

1_ 1M= 

* - 2ir L 2n+4m-3 + 2n-4m+3 10 

= 2ir (am,n-bm,n), 

where am,n is defined by (6.3) and 

(6.16) 1 -cos((2n+4m -3)/N) 1-Scos((2n 4md+3)r/N) 

Therefore t3 can be written as 

(6.17) =()n2r [2 Z(m ,n -]mr)-diN 

where 

(6.18) dn,N = NGN (2-N ) sin(2nr/N) 

2 N~ ~ ~ ~~~~~~2i 
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It is clear from (3.13) and (6.18) that 
00 00 

(6.19) - d2n < N2GN(Q - < (InN)2. 

n=N n=N 

On the other hand, using (3.10) and Lemma 6.1 we find 

N 1 (4n -3 N 1 
GN ( ) Z=E 4 3cos (N = ln(4N-3) + 0(1) for n < N, 

and hence we obtain from (6.18) 

1 InN 2) ol (6.20) dn,N = - ln(4N - 3) + O(n)O(1) for n <N. 
4 N2 

Lemma 6.5. It holds that ! ( bm,n) < InN for N> 4. 

Proof. As in the proof of Lemma 6.2, we have En=3N+1 - (zr=1 bm,n) < 1. 

On the other hand, in view of 

1 -cos ((2n+4m-3)7r/N)I< (2n?4m 3)2 

11 -cos ((2n - 4m + 3)ir/N)< ( 2n - 4m ?3)2 

which hold for 1 < n < 3N, we have N= bm,n < 1 for 1 < n < 3N and 
therefore Lemma 6.1 implies that 

3N N 2 3N1 

_ [] E n tE bm,n <En < In N. C]1 

Lemma 6.6. It holds that IHN2lI-2(1/2) (ln N)3 for N > 4. 

Proof. According to Lemma 3.1, we have IHN IHl2(O1/2) Zn=1 nI3n. We deduce 

immediately from (6.17), (6.19), (6.20) and Lemmas 6.2-6.5 that 
00 

En,n2< (InN)3. 
n=1 

To prove the reverse estimate, we observe from (6.6) and Lemma 6.1 that 

Cn < In (2n+4N-3) + (1) for n<N, 

which together with (6.4), (6.5), (6.17) and (6.20) imply that 

n7r 

where 

1 n N (2) and Pn = 0(1). 
-4 
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Hence we have, by Lemma 6.1, 

00 N-1 N-1 4 -,y2 
n) t3n - s? t3N-i rv7r2 [2 (; + >Pn)] >(lnN) O 

n=1 n=1 n=1 

Lemma 6.7. It holds that lIpHN J1/2( 1/2) (In N) for N> 4. 

Proof. We have, by (6.14), 

{(GN -1 HPGN) (x) 0? X x < 
- 

(HN - tpHN) (X) = 2 N 

2 N -2 

Therefore, as in the proof of Lemma 3.3, standard interpolation error estimates and 
(3.11) imply that 

(6.21) IHN - flpHNIH2(o ,1/2) $1 

The lemma follows from (6.21) and Lemma 6.6. O 

Proof of Lemma 3.8. By the symmetry of 3p, it suffices to estimate IPPIHi/2(0 1 +P) . 

For N = 2, the estimate (3.27) is trivial. Let N be greater than or equal to 4, 
and pp (resp. fLpHN) be extended to be zero outside (0, 2 + p) (resp. (0, 1/2)). 
By (3.25), (6.14) and recall 3p = IlpGN, we see that 1p - IpHN is a continuous 
function that vanishes outside (- p, 2 + p). Moreover, it is linear on (1 - p, 2) 
and (22+ p), and equals 1GN(1/2) at x = 1/2. For such a function, a scaling 
argument yields 

(6.22) IPP- pHNIH1/2(R) GN(1/2). 

The estimate (3.27) for N > 4 follows from (3.2), (3.13), (6.22), and Lemma 6.7. C] 
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